

Talk given on the occasion of the award of an Honorary Doctorate Degree at "George Asachi" Technical University of Iasi, 29 May 2014

Adisa Azapagic

The University of Manchester

"Gheorghe Asachi" Technical University of Iaşi

The University of Manchester

Centenary of chemical engineering and environmental protection at lasi

Manchester: The birthplace of chemical engineering

Global challenges

Population growth
Rapid urbanisation
Food supply
Water access
Energy demand
Climate change
Resource scarcity

Food demand to treble by 2050

FAO, 2011

Water demand to increase by 50% by 2050

Source: OECD, 2012

3 bn people to be affected by water scarcity

Energy demand to grow by 1/3rd by 2035

IEA, 2012. World Energy Outlook

GHG emissions doubled since 1970

Sustainable engineering: Shaping our future

Systems approach and life cycle thinking

Providing sustainable engineering solutions

Systems approach: Energy

Key sustainability issues for energy

OFossil fuels

OClimate change

OSecurity of supply

OFuel poverty

Opportunities in energy

Sustainable solutions
Low-carbon
Flexible
Diverse
Locally relevant
Affordable

OExamples

OEnergy efficiency

ONuclear

- ORenewables
- Carbon capture and utilisation
- OEnergy storage
- Ounconventional gas and oil

Systems approach: Food

Key sustainability issues for food

OGHG emissions

OWaste

OLand competition

○Food security

Opportunities in food

- Improved agricultural practices and yields
- OImproved process efficiencies
- Waste reduction and utilisation
- ONew technologies and foods

Systems approach: Water

Key sustainability issues for water

○ Water scarcity

O Up to 3 bn people will be living in water-scarce areas by 2025

Access to clean water
 1 bn people lack access

Access to sanitation
 2.5 bn people lack adequate sanitation

Inefficient water use

• Agriculture uses 70% of all water withdrawals globally

O Tap water used for sanitation

• Water pollution

Opportunities in water

- Improved water efficiency
 Reduction and reuse
- Better irrigation and water management systems
- New water sources
 Desalination
 Waste water
- Water treatment technologies
 Personal care products
 Nutrients

Reduction of water footprint

The systems approach: resources

Key sustainability issues for resources

Profligate and inequitable use

 Developed countries consume much more than developing countries

Lack of/low reuse and recycling
 90% of products become waste within 6 months

Some opportunities in resources

O Catalysis

- Many of the critical elements used as catalysts: e.g. platinumgroup metals, Co, Ce, Ge, Sb, In
- Our Use of non-critical metals
- O Use of non-metallic catalysts, e.g. enzymes

○ Urban mining

- O Electronic and electrical waste (50 million t/yr)
- O Municipal solid waste (1.6 bn t/yr)
- Road dust (platinum-group metals)
- Landfills

Delivering service rather than product

Sustainable engineering: Shaping our future

- We face unprecedented challenges
- Addressing these requires systems approach and life cycle thinking
- Understanding economic, environmental and social trade offs is essential
- And so is providing robust evidence for and engaging with policy makers
- Above all, next generation of engineers must be educated with sustainability in mind to ensure that challenges are addressed more sustainably than so far